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• Many interests in optimizing DNN 
• Hardware design 

• TPU[1] 

• Dataflow 
• Decisions about for-loop orders of DNN 
• Choose which type of data will be reused 

• Neural network design 
• Depthwise-Separable Convolution[2] 
• Neural Architecture search
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Example of for-loop order for operating a DNN
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Depthwise-Seperable Convolution

• Many interests in optimizing DNN 
• Hardware design 

• TPU[1] 

• Dataflow 
• Decisions about for-loop orders of DNN 
• Choose which type of data will be reused 

• Neural network design 
• Depthwise-Separable Convolution[2] 
• Neural Architecture Search
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• However… 
• TPU: Exploit channel-wise parallelism 
• DSConv: multiple Conv w/ 1 channel  
• With TPU, DSConv is slower than Conv 

due to low hardware utilization 
• Therefore… 
• Accelerator and network have to be 

co-optimized

Need for Co-search



Need for Co-search

Separate search 
• Fitting hardware to network 

➡ Degrades hardware metrics 
• Fitting network to hardware 

➡ Degrades accuracy
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Good accuracy, 
Bad hardware metrics

Good hardware metrics, 
Bad accuracy

*Lower is better
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Our Goal

Good accuracy, 
Good hardware metrics

Co-search 
• Fitting hardware and network 

simultaneously 
✓Good hardware metrics 
✓Good accuracy

*Lower is better
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Differentiable NAS

• Automatically find neural architecture 

• Find and evaluate all candidates at once 

• All loss function need to be differentiable

Integrating hardware search with NAS method

Accelerator Architecture Search

• Dataflow : loop order and data reuse scheme 

• Number of PEs (PEx, PEy) 

• Size of Register File(RF)

Performance

Accuracy

Our Target Problem
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Accelerator Architecture Search
Not 

Differentiable
Performance

Accuracy

Integrating hardware search with NAS method

• Dataflow : loop order and data reuse scheme 

• Number of PEs (PEx, PEy) 

• Size of Register File(RF)



Our Target Problem
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Differentiable NAS

• Automatically find neural architecture 

• Find and evaluate all candidates at once 

• All loss function need to be differentiable

Accelerator Architecture Search
Differentiable NN 

approximation
Performance

Accuracy

Integrating hardware search with NAS method

• Dataflow : loop order and data reuse scheme 

• Number of PEs (PEx, PEy) 

• Size of Register File(RF)



DANCE:  
Differentiable Accelerator/Network Co-Exploration

Differentiable co-exploration Differentiable Cost-estimation Network
Differentiable  

Optimal HW-generation 
Network
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Overall Architecture

• NAS module determines  
neural network architecture 
• DANCE evaluator determines 

accelerator architecture  
and predicts hardware metrics
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Overall Architecture
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Overall Architecture
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• NAS module determines  
neural network architecture 
• DANCE evaluator determines 

accelerator architecture  
and predicts hardware metrics 
• HW metrics of accelerator 

directly affect NN architecture  
by gradient flow



Evaluator Module

Consists of Two Neural Network 
1. Hardware generation network 
2. Cost estimation network
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Hardware Generation Network 
• Pre-trained to find  

optimal HW architecture 
• Choose optimal  

PEx, PEy, RF, DF 
configuration

Evaluator Module
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Evaluator Module

Cost Estimation Network 
• Neural Net approximation of 

Hardware Cost Model 
• Timeloop, Accelergy 
• Any Cost Model can be used 
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Training Evaluator Module

Dataset for training Evaluator Module 
• Hardware generation network 

- input: Neural network architecture 
- output: Optimal accelerator architecture 
- 50K networks sampled 

• Cost estimation network 
- input: NN-HW pair 
- output: HW metrics for given NN-HW pair 
- 1.8 million pairs sampled

Dataset
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Evaluator Module

Less than 2 percent error estimation compared with Timeloop cost model
20

Network Accuracy

Hardware 
Generator

PEx 
98.9%

PEy 
98.3%

RF size 
98.3%

Dataflow 
98.8%

Network MSRE(Mean Square Relative Error)

Cost Estimator Latency 
99.6%

Energy 
99.7%

Area 
99.9%

Network MSRE(Mean Square Relative Error)

Overal Evaluator Latency 
98.3%

Energy 
98.3%

Area 
99.2%



Comparison with Naive approach

0.5ms for a single inference 
on a single 2080Ti GPU

Timeloop

Accelergy

112s of exhaustive search 
on 48 threads  

of two Xeon Silver-4214 CPUs

Timeloop

Accelergy
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 CostHW_EDAP = Energy ⋅ Latency ⋅ Area
CostHW_linear = λEEnergy + λLLatency + λAArea

Experimental Settings

Select one equation to optimize HW metrics 
• EDAP cost 
• Optimize three aspects at the same time 

• {Latency, Energy}-oriented loss 
• Give more weights by optimization priority
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• CIFAR-10 Dataset 
• Compared to baseline, 
• 10x better EDAP 
• 3x better latency 

   with similar accuracy
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Experimental Results

*Lower is better



• Accelerators can utilize 
channel-level parallelism  
• To achieve low latency, 
• Get benefit from  

channel-level parallelism

Search NN-HW with latency-oriented cost function
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Experimental Results: Latency-oriented



• Neural network 
• Small kernel sizes 

• Hardware accelerator 
• Big PE array 

• Weight Stationary dataflow 
➡ low latency
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Search NN-HW with latency-oriented cost function

Experimental Results: Latency-oriented



• Energy consumption  
• Memory accesses 
• MAC ops 

• To achieve low energy 
➡ Reduce  

 memory accesses
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Search NN-HW with energy-oriented cost function

Experimental Results: Energy-oriented



• Neural network 
• Large kernel sizes 
• Narrow channels 

• Hardware accelerator 
• Large RF for  

more local data reuse 
• Row Stationary dataflow 

➡good energy efficiency
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Search NN-HW with energy-oriented cost function

Experimental Results: Energy-oriented



Comparison with Prior Works
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Algorithm Backbone Dataset Acc.(%) GPU-
hours

Candidat
es Method Net-HW 

Relation

FPGA/DNN co-design: An efficient design 
methodology for IoT intelligence on the edge Custom DAC-SDC 68.6% N/A 68 CD O

On neural architecture search for resource-
constrained hardware platforms Custom CIFAR-10 89.7% N/A N/A RL O

Co-Exploration of neural architectures and 
heterogeneous ASIC accelerator designs 

Targeting Multiple Tasks
ResNet-9 CIFAR-10 93.2% 3.5h ~160 RL O

Best of both worlds: AutoML code sign of 
a CNN and its hardware accelerator NASBench CIFAR-100 74.2% 2300h 2300 RL O

Hardware/software co-exploration of 
neural architectures ProxylessNAS CIFAR-10 85.2% 103.9h 308 RL O

EDD: Efficient Differentiable DNN 
Architecture and Implementation Co-search 

for embedded AI solutions
ProxylessNAS CIFAR-10 94.4% 3h 1 gradient X

DANCE: Differentiable Accelerator/
Network Co-Exploration ProxylessNAS CIFAR-10 95.0% 3h 1 gradient O
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Conclusion
• Novel differentiable method for co-optimizing DNN & accelerator 
• Build hardware evaluator with neural network 
• Get optimal hardware design with evaluator 
• Propagate HW costs to NAS module via gradient 

• Reduce co-exploration costs 
• Applicable to the various tasks 
• e.g. video processing, NLP
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