

1

GradPIM: A Practical Processing-in-DRAM Architecture for Gradient Descent

Authors: Heesu Kim, Hanmin Park, Taehyun Kim, Kwanheum Cho, Eojin Lee, Soojung Ryu, Hyuk-Jae Lee, Kiyoung Choi, and Jinho Lee

Presenter: Heesu Kim

What is GradPIM?

- **GradPIM** = **Grad**ient descent with processing-in-memory (**PIM**).
- What: Accelerating gradient descent (GD) algorithm for deep neural network training.
- **How**: Isolating memory traffics of GD from I/O between host and memory.

Background - Gradient Descent (GD)

- Algorithm for training parameters (weights) of deep neural network.
- Three steps: Forward (Fwd) \rightarrow Backward (Bwd) \rightarrow Weight Update (Wup).
 - Fwd: compute an error.
 - Bwd: propagate error-gradients.
 - Wup: update weights with gradients.

Background – Weight update (Wup) in GD

- Wup is **memory-intensive** (Low Ops/byte).
 - RD/WR: multiple values, Ops: a few MAC operations.
- Wup is appropriate target for PIM.
 - PIM provides high bandwidth with relatively low computing power.
- Note: Wup can be processed in vectorized form (element-wise).

GradPIM accelerates Wup

- GradPIM isolates memory traffics for Wup.
 - Use Internal bandwidth instead of limited external bandwidth.

Expected gain from GradPIM

• GradPIM reduces the memory traffics in "Wup".

Background - DRAM Architecture

- Bank conflict: consecutive requests toward different rows in a bank.
 - Only a row can be activated at a time.
- Global I/O limits memory bandwidth.
 - Shared by all banks of a device.
 - Peak memory bandwidth < Σ bank's internal bandwidths.

Bank conflict

7

Design rules for GradPIM

- (Compatibility) Compatible with DDR protocol.
 - Memory controller has a complete control over GradPIM (passive device).
 - Use the reserved command (RFU) of DDR protocol.
- (Compatibility) Non-invasive to memory cell-arrays.
 - Modifying a cell-array is too radical in view of process.
- (Performance) Utilizes local I/O while being decoupled to global I/O.

Naïve PIM design – Bank-level parallelism

- Place GradPIM near each bank I/O.
 - To use internal bandwidth of each bank.
- Put data-arrays on different rows of a bank.
 - Accessing data-arrays for weight update \rightarrow Lots of bank conflicts.

$$\overrightarrow{\theta_{t+1}} = \alpha \overrightarrow{v_t} + \beta \overrightarrow{\theta_t} + \overrightarrow{g_t}$$

Naïve PIM design – Bank + Array of Structure

- Change the array layout to "array of structure" format.
 - Interleaving multiple data-arrays $\vec{\theta_t}$, $\vec{v_t}$, $\vec{g_t}$, to a single data-array (θ_t, v_t, g_t) .
- No bank conflicts.
 - Accessing consecutive columns in a row.
- However, degraded bandwidth in forward and backward steps.

 $(\theta_t, v_{\overline{t}}, g_{\overline{t}})$

Required data in forward.

 $(\theta_{\overline{t}}, v_{\overline{t}}, g_t)$

Required data in backward.

GradPIM – Bank-group level parallelism 1.

- Place GradPIM units near each bank-group I/O gating.
 - To use internal bandwidth of each bank-group.
 - Note: a bank-group has four banks in DDR4.

GradPIM – Bank-group level parallelism 2.

- Put data-arrays on different banks within a bank-group.
 - Different banks: No bank conflict.
- Address Mapping: Bank-ID is in MSB.
 - Each value spreads over same bank-ID.

GradPIM – Unit Architecture

- Components: Registers (2 for temp, 1 for quant), Scalers, and Parallel arithmetic units.
- Supported operations:
 - Scaled read: read through scaler. (Scale a value by $2^m \pm 2^n$)
 - Parallel operations: element-wise add/sub and quant/dequant.
 - Writeback: Store the value from registers into memory cells.

GradPIM – Commanding

- Use RFU (Reserved for Future Use) command of DDR4 protocol.
 - Only **5 bits** are left us to control GradPIM.
- Truth table
 - Scale ID: Scaler's hyper-param.
 - Src/Dst Position: offset in a register.
 - Src/Dst: A bit is enough to identify a register out of **two registers**.

Signal Func.	Op0	Op1	Param0	Param1	Src/Dst
Scaled Read	L	L	Scal	e ID	Dst
DeQuant	Н	L	Src Po	osition	Dst
Quant	Н	Н	Dst Po	osition	Src
Writeback	L	Н	L	L	Src
Q. Reg	L	Н	Н	L	RD/WR
Add	L	Н	H	H	Dst
Sub	L	Н	L	Н	Dst

Experiment setup – Hardware

- Neural Processing Unit (NPU): 256x256 multiplier-adder trees.
 - 128 TOPS @ 1GHz, Nangate 45nm.
- Memory: DDR4-2133 with 4 ranks (x8 8Gb DDR4-SDRAM).
- GradPIM: Layout in 32nm (scaled from 45nm) with 3-metal layers.
 - Area: Equivalent to 1Mb DRAM cells.

Module	Area (μm^2)	Power (mW)
Adder	320.1	0.058
Quantize	275.4	0.056
Dequantize	244.8	0.041
Scaler	606.1	0.159
Registers $(\times 3)$	206.7	0.04
Total	8267.8	1.74

Experiment setup – Simulation & Networks

- In-house simulator with DRAMSim3^{*}.
 - SystemC based cycle-accurate simulator.
 - Timing and energy of GradPIM are modeled in DRAMSim3.
- Target deep neural networks.
 - ResNet18 and ResNet50 Convolutional layers.
 - MobileNet Light-weight network for mobile devices.
 - MLP1 Fully-connected layers.
 - AlphaGoZero Very deep convolutional layers for GO game.

*S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, "DRAMsim3: a cycle-accurate, thermal-capable DRAM simulator," Computer Architecture Letters, 2020.

Experimental result – Execution time

- Baseline performs Wup in NPU.
- GradPIM.v1 achieves **2.25X** speedup in Wup, thus **1.38X** overall speedup.
 - "Filled" part for Wup and "grayed part" for the others (Fwd and Bwd).
 - Bigger portion of Wup \rightarrow Higher overall gain.

17

Experimental result – Energy consumption

- GradPIM.v1 consumes extra energy for PIM.
- GradPIM.v1 shows less energy consumption with reduced global I/O.

Bottleneck analysis – Command-bus utilization

- Command-bus restricts the internal bandwidth of GradPIM.v1.
 - All GradPIM units share a single command-bus.
- GradPIM.v1 reaches 28GBps internal bandwidth.
 - Much lower than 181.28GBps maximum.

Buffer device (BD) interface

- Use buffer devices to alleviate the command bus bottleneck.
 - Buffer devices function as fan-out expanders.
- Previous works utilizes buffer device in high-performance computing.
 - e.g., TensorDIMM*: places computing units on buffer devices.

* Y. Kwon, Y. Lee, and M. Rhu, "TensorDIMM: A practical near-memory processing architecture for embeddings and tensor operations in deep learning," in MICRO, 2019.

Experimental result – Execution time (w/ BD)

- GradPIM.v2 outperforms all baselines including TD.
 - TD: TensorDIMM-like gradient descent accelerator.
 - Achieves 8.23X in Wup \rightarrow 1.94X overall.

Sensitivity – MAC size and Memory bandwidth

- Verify speedups on various "MAC size"/"Mem BW".
 - Higher ratio \rightarrow memory bottleneck \rightarrow higher speedup from GradPIM.
 - Until MAC setup latency dominates execution time.
- We plot the ratio of famous NPUs and GPUs on X-axis.

Sensitivity – Data precisions

- Mixed-precision: use both of high precision and low precision values.
- Bigger gap between precisions results in the higher speedups.
 - Bigger gap makes portion of Wup in execution time more dominant.
- However, even in 32/32, GradPIM still shows a substantial amount of speedup.

Future work – Distributed training

- Large-scale training → Distributed training
 - Workload of GD is distributed to multiple nodes.
- In data-parallelism approach, each node processes a subset of a minibatch.
 - In each node (total four nodes), forward and backward become faster.
 - But, Wup is not dependent on the batch size \rightarrow Wup portion becomes larger.

Distributed learning (data-parallelism)

Summary

- Gradient descent algorithm is suitable for PIM.
 - Memory intensive. (Low ops/byte ratio)
- GradPIM exploits bank-group level internal bandwidth of DRAM.
- GradPIM is practical.
 - Compatible with DDR protocol.
 - Non-invasive to cell array of DRAM.
- GradPIM achieves 1.94X speedup.
 - Works well for distributed training.