FlexReduce: Flexible All-reduce for Distributed
Deep Learning on Asymmetric Network Topology

Jinho Lee
Yonsei University
Seoul, Korea
leejinho@yonsei.ac.kr

Inseok Hwang
IBM
Austin, TX, USA
ihwang@us.ibm.com

Abstract—We propose FlexReduce, an efficient and flexible all-
reduce algorithm for distributed deep learning under irregular
network hierarchies. With ever-growing deep neural networks,
distributed learning over multiple nodes is becoming imperative
for expedited training. There are several approaches leveraging
the symmetric network structure to optimize the performance
over different hierarchy levels of the network. However, the
assumption of symmetric network does not always hold, especially
in shared cloud environments. By allocating an uneven portion
of gradients to each learner (GPU), FlexReduce outperforms
conventional algorithms on asymmetric network structures, and
still performs even or better on symmetric networks.

I. INTRODUCTION

The blooming of Al today has led to ballooning of deep
neural networks, with up to hundreds of millions of parameters
per network [1]-[4]]. Training such networks with massive
data-sets can take several days or weeks. To tackle this, a
popular approach is distributed deep learning by exploiting data
parallelism with multiple GPUs [5|-[9]. A batch of data is split
across many learners and the gradients from them are aggre-
gated for a synchronized weight update. While distributed deep
learning can significantly shorten training time, communicating
across the network for collective gradient updates severely
bottlenecks scalability [10]. The computation time is a function
of batch size divided by the number of learners, while the
communication time is only a function of the total learners and
the number of learnable parameters. Therefore, as the number of
learners (usually GPUs) increases, the ratio of communication
to total training time skyrockets [[1O]—[13[]. A larger batch size
can make such ratio more favorable for distributed training,
but may degrade the predictive power of the network [14]-
[16]. Hence, the need for faster communication algorithms for
distributed deep learning (DDL) is clearly apparent.

A well-known yet naive approach to enable large-scale data-
parallel training is to deploy a parameter server that handles
synchronization, update, and distribution of the parameters [17].
However, a parameter server is unscalable by design, which
necessitates more scalable decentralized approaches primarily
based on all-reduce schemes which are often implemented
by ring algorithms [18]], [[19]. The gradients computed by
learners are aggregated using an all-reduce operation — the
functional equivalent of a reduce followed by a broadcast,
or a reduce-scatter followed by an all-gather. The all-reduce
has been optimized for decades [20] in the areas of HPC

Soham Shah
Brain Technologies Inc.
San Mateo, CA, USA

sshah@brain.im

Minsik Cho
IBM
Austin, TX, USA
minsikcho@us.ibm.com

(High Performance Computing). However, most of its existing
implementations assume that all learners are connected via
uniform links [18]-[21]], i.e., all links are of the equal
bandwidth. This assumption is not true in typical multi-GPU
multi-node DDL environments; the links between GPUs in the
same node (e.g., PCI-e) are overwhelmingly faster than the
links between GPUs across different nodes (e.g., Ethernet).

Recently, BlueConnect [22] was proposed to consider such
hierarchy into account for DDL. BlueConnect decomposes the
all-reduce into multiple dimensions to minimize data transfer
through bottlenecking links. However, this strategy is beneficial
only when the DDL topology satisfies the horizontal symmetry,
i.e., the nodes in the same level have the same fan-outs. It
means that, in multi-node multi-GPU environments, each node
should have the same number of GPUs and the exact same
number of nodes connect to the routers at the same level.

We argue that the assumption of horizontal symmetry is
very unlikely to hold in shared resource environments, such
as public cloud settings in which resources are divided into
fine-grained virtual instances allocated in a dynamic and
elastic manner. Furthermore, such asymmetric topology would
be far more common in recently surging federated learning
environments [23]], [24]]. Accordingly, the chance of horizontal
symmetry would be slim in practice.

In this paper, we propose FlexReduce, a bandwidth-
optimized all-reduce framework for distributed deep learning
for non-symmetric networks. FlexReduce eliminates the hori-
zontal symmetry requirement from the all-reduce optimization,
using uneven reduce-scatter/all-gather schemes where each
learner takes a different portion of gradient data for reduce-
scatter. As a result, we achieve a significant speedup even
with asymmetric network topologies and maintain the same
class of speedup as the prior art on symmetric networks. Our
contributions include:

o The FlexReduce algorithm, introducing a decomposed,
uneven reduce-scatter followed by an uneven all-gather
— minimizing data transfer through bottleneck links in
asymmetric networks.

o Theoretical cost analysis of FlexReduce with an upper
bound for the number of reduce calls.

o A performance comparison of FlexReduce with other state-
of-the-art distributed all-reduce communicative algorithms.

(d) (e) ®

Fig. 1. Reduce-scatter done by (a)-(c) Ring algorithm with 3 learners and
(d)-(f) BlueConnect [22] algorithm with 3 X2 learners.

II. PRELIMINARY
A. Prior Art

All-reduce in Distributed SGD

All-reduce operations are usually broken into two stages: a
reduce-scatter, followed by an all-gather. One popular way of
implementing these is with the ring algorithm. Fig. [T] (a)-(c)
shows the reduce-scatter done by ring algorithm with three
learners. Each of the d learners splits their data vector into d
partitions, followed by sending a partition to its following ring-
neighbor while receiving its preceding ring-neighbor’s partition.
This receive-reduce-send process is repeated over d — 1 steps
(2 in the example). As a result, each learner gets a portion of
fully-reduced vectors at the end of the reduce-scatter. Then
all-gather is performed simply by reverse-playing the reduce-
scatter procedure where the reduces are replaced by overwrite.
This algorithm is bandwidth-optimal as long as all the links in
the network have identical bandwidths. Alternatively, when d
is a power of 2, a recursive halving/doubling method can be
used, which transfers data in a butterfly fashion and reduces the
latency. The ring and recursive algorithms with their variants
are often used in standard collective communication libraries
such as MPI [20] and Nccl [25].

While the above algorithms are popularly employed in
commercial settings, they are bandwidth-optimal only when the
link bandwidths are uniform. This assumption usually holds
for HPC, where each node is a machine in a cluster. However,
in deep learning, the uniform-bandwidth assumption is no
longer true. The GPUs used as learners often provide high
local bandwidth at the scale of around 100GB/s with PCI-
express or NVLink. Connecting network links on the other
hand, can range from 0.1GB/s to 10GB/s with connections
such as Ethernet or Infiniband. Therefore, the narrow-bandwidth
network bottlenecks the entire system.

For this reason, a few all-reduce algorithms in favor of non-
uniform hierarchies have been proposed [[12]], [22]. In [12],
all-reduce is done in three phases: the first phase performs
local reduce within each machine in correspondence to one
master learner on each machine. The second phase performs
all-reduce across each machine’s master learner. Finally, a
broadcast from the masters to their local learners completes the

TABLE I
NOTATIONS
n number of items dy; degree of node x
L number of levels in the tree J; degree at level k& (symmetric)
Vi set of nodes in level k& w, bandwidth of links at node =

!

p; ancestor node of x at level | wj bandwidth at level &£ (symmetric)

all-reduce process. This helps reduce the data transfer through
the bottleneck links. However, this scheme introduces more
communicative steps and also leaves the non-master learners
idle, creating a significant bandwidth and latency penalty.

BlueConnect [22] provides an interesting solution by decom-
posing the reduce-scatter and all-gather further into multiple
levels using the dimension-regularity of the network as shown
in Fig. [T] (d)-(f) with six (3x2) learners where the global
bandwidth ws is assumed to be much lower than the local
bandwidth w;. First, it performs a local reduce-scatter among
dy learners in the first dimension. Next, the learners perform
d; parallel reduce-scatters with the matching dy learners in
the second dimension to finish the global reduce-scatter. This
minimizes traffic through the bottleneck and reduces the number
of steps, with all learners participating in every step. This
scheme is a generalization of the recursive halving/doubling
technique and will work as long as the learner network can be
factored into multiple dimensions (3 X 2 in the example).

FlexReduce can be seen as a novel generalization on Blue-
Connect, which lifts the symmetry constraint from BlueConnect.
FlexReduce provides an equivalent speedup compared to
BlueConnect, even on non-factorizable network structures,
where BlueConnect falls back to a naive ring scheme.

B. Performance Models

As in [20], the time cost for a message of n items in
collective communication can be written as the following:

T=a+— (1)
w

where « is latency per message and w is the link bandwidth.
With this, the time cost for a reduce-scatter on d learners using
the ring algorithm can be modeled as :

n
d-w
because each of the learner sends - items over d — 1 steps.
With this, the cost for BlueConnect can be modeled as below:

3)

, min
0<k<L

L-1
Toe =2y To(—por—: 00 .

zz—; (Hf;ol 0; {H;ZS 9;)
where L is the number of levels, or dimensions, and w; and
0; are the link bandwidth and the number of learners in level
i, respectively. The sum is representative of one step per
dimension. The number of items for each learner decreases
through reduce-scatter, but the bandwidth usable per learner
also decreases as multiple parallel reduce-scatter operators
share higher level links. Finally, it is multiplied by 2 for the
all-gather operations performed in reverse.

()

|

=
—

=

Y

—

il K5
=

/A

10

R

Cur.range [0,12) [0,12) [012) [012) [012) currange [012) [0,12) 012 012 [0,12)
Portion 1/2 1/2 1/3 1/3 1/ Portion 1/2 1/2 1/3 1/3 1/3

S.=2

Cur.range [0,6) [6,12) [0,4) 48 [812) Currange [0,6) [612) [0,3) 48 [812)
Portion 1/2 1/2 1/3 1/3 173 Portion 1/4 1/ 1/6 ./ 1/6

rder 5
Targetrange [2,5) [7,10) [0,2) 57 [10,12)

© Ziterns
6 items
o (my —H—— 15—
E Y -
ST 12 SN
© | | — -
e e = e — HH
Cur.range [0,6) [612) [0,4) [48) [812) Currange (25 17,10) 10,2) [57) [1012)
Portion 1/4 1/4 1/6 1/6 1/6 Portion 1/4 1/4 1/6 1/6 1/6

rder 5
Targetrange [2,5) [7,10) [0.2) 57) [10,12)

Fig. 2. An example of FlexReduce on 5 learners with 12 items.
ITI. FLEXREDUCE ALGORITHM

A. Ilustrative Example

The core idea of FlexReduce is uneven decomposed reduce-
scatter and all-gather. Rather than performing uniform reduce-
scatter by splitting the item vector equally to every learner in
the system, we decide to differ the portion of data each learner
owns after the reduce-scatter phase. Consequently, we get a
balanced, minimized data transfer across the bottleneck link at
the root. We use widely implemented reduce() and broadcast()
functions [20], [25] as our core building blocks.

The illustrative example in Fig. [2] shows how FlexReduce
is performed on a two-machine system, with 2 learners on
the left machine and 3 learners on the right. Topologically,
this is a depth-2 tree where the upper level’s bandwidth (w,)
is significantly less than those of the lower levels (wp, we).
FlexReduce processes each level of the tree, from the bottom
to the top. First, the target portion for each leaf node (i.e., the
learners) is set to all n data items. Then, branch nodes in the
first level (L) divide the target portions of their leaves by the
branch nodes’ degrees as in Fig. [2] (a). In the example, since
node B has degree of 2, the target portions of leaves D, E will
be set to n/2. Similarly, the target portions of F'— H will be set
to n/3. Then each leaf is assigned a range sized to its portion,
such that its range does not overlap with its neighbors’ ranges.
Since all nodes still contain the equivalent ranges, we assign
the target range evenly without loss of generality. According
to the assigned target range, a reduce operation as in Fig.
(b) is called so that each leaf will now have reduced data of
their peers for all items within their target range (Fig. [2] (c)).

Processing L, level starts similarly by dividing the target
portions of the leaf nodes (D — H) by 2, as node A has degree
2 (Fig. 2). For this, converting the portions to target ranges is
non-trivial as all the nodes have different ranges of items and
portion sizes. Accordingly, there are three goals in setting new
target ranges:

1) Each node has non-overlapping ranges with its peers.

2) The target range of each learner should be continuous.

3) The target range should overlap as much as possible with

the current range.

Goal 1 is trivial since we do not need multiple copies of
a reduced item. Goal 2 implies minimal reduce calls — too
many reduce calls would introduce computational overheads,
making it hard to utilize available bandwidth. Goal 3 is to
minimize data transfer at the lower level. Even though upper
level data transfer is minimized, having a target range that
does not completely overlap with the current range generates
more lower-level traffic. Ideally, all the target ranges should
be completely included in the current range. In an asymmetric
topology as in the example, it is nontrivial and often impossible
to find a set of target ranges that satisfy both goal 2 and 3.

We devise a heuristic that works well in practice. First, we
sort all leaves under the same branch node by their current
ranges. In this case, we sort all leaves since the only branch
at L; is the root. We first sort by the range’s end, breaking
ties by the range’s start. If both values are equal, we use lexi-
cographical order. Then, visiting each leaf in the sorted order,
we assign the range [progress_counter, progress_counter +
target_portion) and increase the progress_counter. The
bottom two rows of Fig. [2[(d) shows the resulting sort order
and the assigned ranges. Visiting all nodes guarantees that
progress_counter = n as the target portions are assigned by
accumulated degree along the path to the branch node.

After the ranges have been assigned, the reduce calls are
made. The data within a single range can come from different
leaves, with multiple reduce calls as in Fig. 2] (e). As the
transfers are global and the amount of data transferred at the
root is equal at both directions, time cost is minimized.

After the uppermost level procedure, each leaf has a non-
overlapping, fully reduced range of items(Fig. 2| (f)). Finally,
for the uneven all-gather, the aforementioned procedure is
performed in reverse, calling broadcasts instead of reduces to
complete the all-reduce.

B. Algorithm Details

The pseudo-code of the procedures described in Section [[IT-A]
is shown in Fig. [3] There are two executable functions:

o FlexReduce_plan() is called only when the network
structure changes. It computes the execution plan and
puts it into planner.

+ FlexReduce_execute() is called every time the system
calls all-reduce. It performs the all-reduce operation by
executing the entries in the planner.

While the two functions can be merged into one and be called
every all-reduce operation, we decouple them since the planning
is a serial job and causes substantial overhead if it is calculated
every time all-reduce is called.

FlexReduce_plan() takes the network structure as input
and outputs the plans to the planner. The planner is a two
dimensional array, where the first dimension is the levels in
the network tree, and the second dimension is the entries for
the calls to make. It works as follows.

Procedure FlexReduce_plan (root) :
planner = &
for leaf in root.leaves() :
4 leaf.init(portion = 1.0, range = [0, 1.0))
5 for level in root.bfs_levels().reverse():
6 level _plan=¢g
for node in level.nodes():
8 for leaf in node.leaves():
9 leaf.portion /= node.degree
10 assign_range(node, level_plan)
1" planner.add(level_plan)
12 for leaf in root.leaves():
13 leaf.range = leaf.next_range

15 | Procedure FlexReduce_execute(items):
16 for level_plan in planner:
17 for entry in level_plan:
18 reduce(items, entry.participants, entry.subrange)
19 sync()
for level_plan in planner.reverse():
for entry in level_plan:

sync()

broadcast(items, entry.participants, entry.subrange)

Procedure assign_range(node, level_plan)

4 progress=0

for leaf in sort_by_range(node.leaves()):

6 leaf.next_range =

[progress, progress+leaf.portion)

8 for (subrange, participants) in
find_bounds(leaf.next_range, node):

10 level_plan.add(subrange, participants)
B progress+=leaf.portion

13 | Procedure find_bounds(range, node):

14 subrange.end = range.begin

s while(subrange.end < range.end):

16 subrange.begin = subrange.end

17 participants =&

18 for leaf in node.leaves():

19 if subrange.begin € leaf.range :

participants.add(leaf)

20 subrange.end = min(range.end, leaf.range.
end for leaf in participants)

yield (subrange, participants)

(a)

(b)

Fig. 3. Pseudo-code of FlexReduce. (a) shows the executable functions and (b) shows the helper functions.

The portion and the range of each leaf under the root are
initialized to all items ((a) line 3-4). Then the graph is visited in
reverse-bfs level order ((a) line 5-7). Visiting each node, all its
leaves get their portion divided by the current node’s degree ((a)
line 8). Then each leaf is assigned a new range while building
the plan for the current level ((a) line 10, assign_range()), and
the plan is added to the planner ((a) line 11).

On assigning the range, the leaves from the current node are
sorted by the end of their range, and then by the start of the
range. Starting from a variable progress at 0, the leaves are
visited in the sorted order, where each leaf sequentially takes
the range equal to its portion and sets it as its next_range
((b) line 5-7). Each time a leaf is assigned a next_range, all
other leaves that currently hold the data are tracked ((b) line
9, find_bounds()). Advancing through the next_range, each
time the set of data holder changes, a subrange is formed,
associating the data holders as reduce() participants ((b) line 14-
21). The subrange and the participants are added into the current
level’s plan ((b) line 10) to finalize the range assignment.

Following the planning, execution is done through FlexRe-
duce_execute(). Iterating through the planner, reduce() calls
are made for each entry fully parallel within a level ((a) line
16-18). After waiting for the reduce() calls from current level
to complete ((a) line 19), we proceed through the subsequent
levels in the planner to finish the uneven reduce-scatter.

Finally, uneven all-gather is performed by calling broadcast()
function in the exact opposite order as reduce() calls were made.
As a result, the planner is iterated in reverse order ((a) line
20) while performing broadcasts.

IV. CoST ANALYSIS

The notations used in this section are listed in TABLE [Il
The depth of the tree L is counted from O for the bottom-

most branch node and L — 1 in the root, with the leaf nodes
uncounted as it will make the equations slightly clearer.
In the first step of local reduce-scatter, the time cost is:
76 = %;(ﬁ(nadrvwz)

ASAA)

4)

Since all learners under each branch node in V}; perform reduce-
scatter in parallel, the slowest reduce-scatter will dominate the
time cost. In the second step, the data transfer goes up one
level, and either of the two levels can become the bottleneck.

®)

n

T max(géa‘“/}fﬁ(n’dmwr)agé%ﬂ<d$7dp,}r’wfb))
From the perspective of nodes in V7, the collection of data from
all their children covers all the items (i.e., the range is [0,n).)
Therefore, it can be seen as doing another local reduce-scatter
at level 1. Since the same traffic is split in the lower level, the
lower level links transfer n/d, items each with their bandwidth.
Extending up to the root level, the cost for the FlexReduce
can be modeled as follows:

L—1 L-1
n
Trr =2 2 Ti=2 ; 0122%% gg}:ﬁ(mﬂpéywx) (6)
i= = i= b

This easily outperforms the ring algorithm. Also, when the
network is symmetric, Eq. [6] meets the conditions below stating
that the degrees and bandwidth only depend on the tree level:

(7

By injecting Eq. [7]into Eq. [6] Trr becomes equivalent to the
cost of BlueConnect [22]] 7. in Eq. [3| as follows:

Ve € Vi wy = wg, Vo dplg =0

L-1
n
Trr :22(}22;{7}(W,51,wk)} ()
=0 i=k "~
L-1

=2 max{(& —(a+ NG
=0 - =

n
) 1y
1wk [[;2), 0

Time (sec.)

Time (sec.)

—o— FR —F— Neel —»— BLC ‘

’ —&— Num_calls Upper_bound

—2
L0 10 — — T T
1 — 8| | 41 |
6 |— —
0.5 |- — 4 | 2 - |
Learners 2 Learners | Learners
0 | | | | | | | | | 0 | | | | | | | | | 0 | | | | | | | | |
4 5 6 7 8 9 10 11 12 4 5 6 7 8 9 10 11 12 4 5 6 7 8 9 10 11 12
(a) 120K Items (b) 120M Items C
: 8 ‘ 800
6| - 6 e
600 |-
4| -+ a4l .
2| -4 2 | 400 |-
0L ‘ Ttems @08 ol ‘ Ttems (10%) | 200 ‘
50 100 50 100 4 5 6 7 8 9 10 11 12
(d) 10 Learners (e) 12 Learners (f) ResNet-18
Fig. 4. Experimental results.
L—-1 . . .
) Z {61 = 1)("YTILZs 8 1 (10) the from impractically small (LeNet-5 with 60K parameters)
= 51 O@égl{“k/)5 5} CNNs to twice of a very large (ResNet-152 with 60M
1 o parameters) CNNs. In the legend, FR represents the latency
—9 7;(%751, min {%}) — Tue (11) of FlexReduce, Necl represents Necl allReduce(), and BLC
=0 ILiZedi 0=k<UT[IT5 6, represents BlueConnect.

One penalty not captured in the above model is that when
the network is extremely unbalanced, there can be a large
number of reduce calls (Alg. 3] (b), line 20). When executing
the Lth step of uneven reduce-scatter, the upper bound on the
number of reduce calls of a learner v can be expressed as
below, assuming that all possible range boundaries do not align
with each other.

L 1
Hz:oﬂ
1
Hz o 3 ol

The numerator inside the sum represents the size of next_range

of learner v, and the denominator represents the current range
of other leaves. While this upper bound can be high when the
network is significantly unbalanced, causing register pressures
to GPUs for parallel reduce calls. However in practice, the
number of reduce calls stayed within 1-3 in most cases.

O(Ncalls(vy L)) -

> |

meVy _1

)W +1 (12
min
u€leaves(m)

V. EVALUATION

We prototyped FlexReduce with C++. For primitive collec-
tive computations, we used ncclReduce() and ncclBroadcast()
from Nccl [25]. ncclAllreduce() and BlueConnect [22] were
used as baselines. We have tested on machines each with a i7-
6900K CPU at 3.20GHz and four Nvidia GeForce 1080Ti GPUs
per machine. The machines are connected via local Ethernet.
To represent both horizontally symmetric and asymmetric DDL
topology, we used two-machine configurations with 4 to 8
learners and three-machine configurations with 9 to 12 learners
with at most one difference in the number of learners per
machine. All numbers are averages of 10 runs.

A. All-reduce Latency Comparisons

Fig.] (a), (b), (d) and (e) shows the latency of the all-
reduce operations. We tested around from 60K to 120M single-
precision floating point gradient items. This range covers

Fig. [] (a) and (b) shows the latency according to different
number of learners over 120K and 120M gradient items. As
expected, FlexReduce outperforms Nccl in all configurations.
With 4 to 8 learner configurations on two machines, the time
saving over Nccl is around 32-42%, and for 9 to 12 learners on
three machines, the saving is around 21-25%. The performance
of FlexReduce also matches the ideal latency, obtained from
Eq. [f] by multiplying the relative speedup to the latency of
Nccl. We have achieved around 90% to 99% of the theoretical.
We suspect the rest is coming from the implementation details,
such as the increased number of reduce calls as we discussed
in Section [[V1

Compared with BlueConnect, FlexReduce also always wins,
especially on horizontally asymmetric topologies (5, 7, 9,
10 and 11 learners), because BlueConnect falls back to the
ring algorithm and performs similar to Nccl. FlexReduce
still performs at least as fast as BlueConnect on symmetric
configurations (4, 6, 8 and 12 learners).

Fig. {] (d) and (e) show the latency by different numbers of
items. In all cases, latency is linear to the number of items.
On 10 learners, BlueConnect and Nccl almost overlap, as they
both use the ring algorithm. On 12 learners, FlexReduce and
BlueConnect come close, since the FlexReduce algorithm has
same cost as BlueConnect on symmetric topologies as in Eq. [6]

Fig.[] (c) shows the number of reduce/broadcast calls per leaf
node (i.e., learner). In all cases, the upper bound on the number
of reduce calls given by Eq. [§]is 3 or 4, as the topologies are
not extremely unbalanced. Nonetheless, the average number
of calls per learner is much less than the upper bound, not
exceeding 1.5 in any cases. This aligns with the result that we
were able to get very close to the theoretical speedup.

#Calls

B. End-to-end Experiments on ResNet

For analyzing the overall effect of FlexReduce on the system,
we conducted an end-to-end experiment on Pytorch [26]. We
used the same setting as in Section [V-A] The network tested is
ResNet-18 [3]] which has approximately 11M parameters. We
modified DistributedDataParallel module of Pytorch by adding
our own process group, so that it can utilize the FlexReduce
as its communication backend. We have used a reduced-size
ImageNet [27] with 64K images and compared the average
time taken per epoch of FlexReduce, BlueConnect and Nccl.

Fig. [(f) shows the results. Overall, the time per epoch
shows the same trends as the latency results in Section
FlexReduce consistently outperforms BlueConnect and Nccl,
while BlueConnect fluctuates, i.e., performing similarly to
FlexReduce at symmetric configurations and similarly to Nccl
at asymmetric conditions.

The average end-to-end relative speedup of FlexReduce
over Nccl is shown to be 14.4%. We note that the end-to-
end latencies include not only the gradient updates, but also
the forward- and backward-pass computations which do not
differ in FlexReduce, BlueConnect, and Nccl. Thus it accounts
for the end-to-end relative speedup of FlexReduce appearing
smaller than those from the all-reduce-only measurements in
the previous subsection. There is an additional factor for this
smaller relative speedup. Given the datapoints with asymmetric
configurations (5, 7, 10, or 11 learners), BlueConnect underper-
forms Nccl by 6.2% while they are expected to be on par. This
aligns with the fact that both BlueConnect and FlexReduce have
more number of cuda kernel calls, consuming GPU resources.
On the experiments from Section it did not affect the
performance since the GPU resources were not the bottleneck.
However in this case, Pytorch overlaps the computation with
the communication by starting the all-reduce while some parts
of the gradients are still being calculated and that incurs the
competition of the GPU resources among the computation and
the communication.

Since this penalty should also apply to FlexReduce, we
believe we can further improve the performance by optimizing
the FlexReduce implementation in a lower level instead of
relying on ncclReduce() and ncclBroadCast(). This becomes
one of our future work.

VI. CONCLUSION

We have proposed FlexReduce, an all-reduce algorithm that
provides speedup, especially on asymmetric network topologies.
The key idea is using uneven reduce-scatter/all-gather to balance
and minimize the traffic through the bottleneck link. The
experiments show up to a 42% latency saving, closer to
the theoretical model we have derived. This algorithm for
all-reduce in asymmetric networks has its value in shared
environments such as cloud services or federated training.
Consequently, users will have less control over accessible
resources, with an increasing likelihood of a system with
an irregular structure. This migration will further necessitate

the need for optimizing performance in such asymmetrically
structured systems. We envision that FlexReduce will provide

an efficient communicative backbone for such an era.

[1]

[2]
[3]
[4]
[5]
[6]
[7]

[8]

[9]
[10]

(11]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]
[26]

[27]

REFERENCES

B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning
deep features for scene recognition using places database,” in NIPS,
2014, pp. 487-495.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770-778.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in CVPR, 2017, pp. 4700-4708.

S. S. Girija, “Tensorflow: Large-scale machine learning on heterogeneous
distributed systems,” tensorflow.org, 2016.

A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” arXiv preprint arXiv:1802.05799, 2018.

T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv preprint
arXiv:1512.01274, 2015.

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le et al., “Large scale distributed deep networks,”
in NIPS, 2012, pp. 1223-1231.

M. Cho, U. Finkler, S. Kumar, D. Kung, V. Saxena, and D. Sreedhar,
“PowerAl DDL,” arXiv preprint arXiv:1708.02188, 2017.

T. Akiba, S. Suzuki, and K. Fukuda, “Extremely large minibatch
SGD: training resnet-50 on imagenet in 15 minutes,” arXiv preprint
arXiv:1711.04325, 2017.

P. Goyal, P. Dollar, R. B. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch
SGD: training imagenet in 1 hour,” arXiv preprint arXiv:1706.02677,
2017.

X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo,
Y. Yang, L. Yu et al., “Highly scalable deep learning training system
with mixed-precision: Training imagenet in four minutes,” arXiv preprint
arXiv:1807.11205, 2018.

Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer, “Imagenet
training in minutes,” in /CPP, 2018, p. 1.

L. Balles, J. Romero, and P. Hennig, “Coupling adaptive batch sizes
with learning rates,” arXiv preprint arXiv:1612.05086, 2016.

N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P.
Tang, “On large-batch training for deep learning: Generalization gap and
sharp minima,” arXiv preprint arXiv:1609.04836, 2016.

A. Krizhevsky, “One weird trick for parallelizing convolutional neural
networks,” arXiv preprint arXiv:1404.5997, 2014.

M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine learning
with the parameter server,” in OSDI, 2014, pp. 583-598.

M. Barnett, L. Shuler, R. van De Geijn, S. Gupta, D. G. Payne, and
J. Watts, “Interprocessor collective communication library (intercom),”
in SHPCC, 1994, pp. 357-364.

P. Patarasuk and X. Yuan, “Bandwidth optimal all-reduce algorithms for
clusters of workstations,” JPDC, vol. 69, no. 2, pp. 117-124, 2009.

R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in MPICH,” IJHPCA, vol. 19, no. 1, pp. 49-66,
Feb. 2005.

R. Rabenseifner, “Optimization of collective reduction operations,” in
ICCS, 2004, pp. 1-9.

M. Cho, U. Finkler, and D. Kung, “Blueconnect: Novel hierarchical
all-reduce on multi-tired network for deep learning,” in SysML, 2016.
H. B. McMahan and D. Ramage, “Federated Learning:
Collaborative Machine Learning without Centralized Training
Data,” 2017, https://ai.googleblog.com/2017/04/federated-learning-
collaborative.html.

J. Kone¢ny, H. B. McMahan, F. X. Yu, P. Richtérik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

Nccl, “https://developer.nvidia.com/nccl,” 2017.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” in NIPS-W, 2017.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in CVPR, 2009, pp. 248-255.

